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Abstract

An n division field of an elliptic curve is an extension field contain-
ing all points of n torsion. It is of interest to find when these fields
are abelian. Previously, Enrique González-Jiménez and Álvaro Lozano-
Robledo showed what n it is possible to have abelian division fields for
elliptic curves defined over Q.
In this project we investigate when abelian division fields of non-CM
elliptic curves arise after a base change from Q to Q(

√
5).

Elliptic Curves
An elliptic curve, E, over Q can be defined by an equation of the form
y2 = x3 + Ax + B, where A,B ∈ Q and ∆E = −16(4A3 + 27B2) ̸= 0.

The Group Law on an Elliptic Curve

There exists a binary operation ⊕ such that (E(C), ⊕) forms a group with
OE as the identity. This operation is known as the group law on the elliptic
curve. Its construction is known as the chord-and-tangent method.

Figure 1:Computation of P+P Figure 2:Computation of P+2P

Figure 3:Computation of P+3P Figure 4:All 5-torsion points and OE

A point P ∈ E(Q) has order n if n is the smallest positive integer such that
nP = P ⊕ P ⊕ · · · ⊕ P = OE. In no such n exists, P has infinite order.
A point P ∈ E(Q) is called a torsion point if it has finite order.

Division Fields
Let E be an elliptic curve. Let K be a field. The n-th division field of
E/K denoted K(E[n])/K is an extension field of K with all the points of n
torsion.
All division fields are Galois extensions. This means K(E[n])/K has a Galois
group which fixes K.
A division field is abelian if its corresponding Galois group is abelian.

Abelian Division Fields Over Q

• Enrique González-Jiménez and Álvaro Lozano-Robledo previously
determined all of the integers n for which there is some elliptic curve E/Q
such that Q(E[n])/Q is abelian.

• They proved when Q(E[n]) is as small as possible, that is, when
Q(E[n]) = Q(ζn), and this is only possible when n = 2,3,4,or 5.

• They were also able to classify all curves such that Q(E[n])/Q is an
abelian extension and this only happens when n = 2,3,4,5,6, or 8.

• They classified the possible Galois groups that occur for each value of n.
• They also used the Weil pairing theorem to see when Q(ζn) ⊆ Q(E[n]).

Motivating Questions

For what values of n can the n-th division field become abelian over the
real quadratic field Q(

√
5) if it wasn’t abelian over Q?

GL2(Fp)

The set E[p] of p-torsion points is isomorphic to Z/pZ × Z/pZ. As a result,
the set of automorphisms of E[p] is isomorphic to GL2(Fp).
Since each field automorphism of the field Q(E[p]) will also be an automor-
phism of E[p], Gal(Q(E[p])/Q) is isomorphic to a subgroup of GL2(Fp).

Method

• We want to start with choosing a prime p.
• We consider all the possible p-division fields for non-CM elliptic curves.
• We determine whether or not Q(

√
5) can be contained in these division

fields.
• If that division field is not abelian over Q, then we want to see if it is

abelian over Q(
√

5).
• We compute Galois groups and their subgroups to determine more about

the fields and their subfields.

Narrowing the Possibilities

Proposition: If Q(E[n])/Q is abelian then Q(
√

5, E[n])/Q(
√

5) is abelian.
González-Jiménez and Lozano-Robledo tells us when division fields are abelian
over Q. The examples of abelian division fields over Q they have also stay
abelian over Q(

√
5).

Proposition: Let 5 ∤ n and 5 ∤ ∆E. If Gal(Q(E[n])/Q) is non-abelian,
then Gal(Q(

√
5)(E[n])/Q(

√
5)) is non-abelian as well.

This means that if we want division field to go from non-abelian over Q to
abelian over Q(

√
5), we want to look at curves where 5 | n or 5 | ∆E.

Proposition: If K(E[n])/K is not abelian, then K(E[dn])/K is not abelian
for d ∈ Z+. And if K(E[dn])/K is abelian, then K(E[n])/K is abelian.
This proposition tells us that if we can say something about prime division
fields being non-abelian, then we can say that multiples of those primes pro-
duce non-abelian division fields.

Let

p∗ =

{
p if p ≡ 1 (mod 4)
−p if p ≡ 3 (mod 4)

where p ̸= 5.
With this, the p division field has subfields as follows:

Q

Q(
√

p∗) Q(
√

5) Q(
√

5p∗)

Q(E[p])

A result by Serre [3] tells us the possibile subgroups of GL2(Fp) that
Gal(Q(E[p])/Q) can be isomorphic to. This result only holds for non-CM
elliptic curves.
In the above case, we have 3 degree 2 extensions over Q. This means the
corresponding Galois group of the p division field has 3 index 2 subgroups.
When we are in these cases, we only need to consider subgroups of GL2(Fp)
which have 3 index 2 subgroups.

2 Division Fields

• The 2 division field of an elliptic curve is the field containing the roots of
x3 + Ax + B.

• The polynomial x3 + Ax + B can split in different ways producing
different corresponding Galois groups:
1 All of it’s roots could be in Q and Gal(Q(E[2])/Q) ∼= {e}.
2 If it has 1 rational root and 2 irrational roots, Gal(Q(E[2])/Q) ∼= C2.
3 If the roots are irrational and ∆E is a perfect square, then Gal(Q(E[2])/Q) ∼= C3.
4 If the roots are irrational and ∆E is not a perfect square, then Gal(Q(E[2])/Q) ∼= S3.

• All of those are abelian except for the S3 case. For this, we have found a
result:

Theorem

If the 2 division field is an S3 extension over Q, then the 2 division field
is abelian over Q(

√
5) iff ∆E = 5d, where d is a perfect square.

3 Division Fields

• The 3 division field of an elliptic curve is the smallest field containing the
3-torsion points of the elliptic curve.

• Gal(Q(E[3])/Q) is isomorphic to the following subgroups of GL2(F3):
C2, D4, D6, SD16, and S3.

Theorem

If Gal(Q(E[3])/Q) is isomorphic to D6, S3, or SD16, then
Gal(Q(E[3])/Q(

√
5)) remains nonabelian.

5 Division Field

• The 5 division field of an elliptic curve is the smallest field containing the
5-torsion points of the elliptic curve.

• Gal(Q(E[5])/Q) is isomorphic to one of the following:
C2 × C4, C2

4 , OD16, C4 ≀ C2, C2 × F5, C24 : C2, C4 × F5, C4, F5, or
GL2(F5).

Theorem

If Gal(Q(E[5])/Q) is isomorphic to OD16, then Gal(Q(E[5])/Q(
√

5))
remains nonabelian.

Q

Q(
√

5)

Q(ζ5)

Q(E[5])

G

7 Division Field

• These groups are subgroups of GL2(F7) that can appear as Galois groups
of 7-division fields over Q that have at least 3 subgroups of index 2: C2

6 ,
C6 × S3, C2 × F7, C6 × D7, C6 ≀ C2, C6 × F7, and C3 × SD32.

• Since C2
6 is abelian already, we know it will stay abelian after a base

change to Q(
√

5). We have already excluded the others either by some
theoretical argument or by computing determinants.

• So far, C6 × S3, C6 ≀ C2, and C3 × SD32 are the potential index 2
subgroups that could become abelian after a base change to Q(

√
5).

Future Work

• We plan to finish our work in 3 and 7 division fields. We also plan to
follow up on some promising results in 4 and 10 division fields.

• We would like to determine which other primes p and composites n can
give us abelian extensions over Q(

√
5).

• We would like to look at division fields of elliptic curves that are defined
over Q(

√
5) and not over Q.

• We would also like to extend this work to CM elliptic curves as well.
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